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Abstract

Overproduction of reactive oxygen species (ROS) is often related to inflammation or cancer and 

can cause tissue damage. Probes that have been previously reported to image ROS typically rely 

on imaging techniques that have low depth penetration in tissue, thus limiting their use to 

superficial disease sites. We report herein a novel formulation of hybrid nanogels loaded with gold 

nanoparticles (AuNP) to produce contrast for computed tomography (CT) and photoacoustics 

(PA), both being deep-tissue imaging techniques. The polyphosphazene polymer has been 

designed to selectively degrade upon ROS exposure, which triggers a switch-off of the PA signal 

by AuNP disassembly. This ROS-triggered degradation of the nanoprobes leads to a significant 

decrease in the PA contrast, thus allowing ratiometric ROS imaging by comparing the PA to CT 

signal. Furthermore, ROS imaging using these nanoprobes was applied to an in vitro model of 

inflammation, that is, LPS-stimulated macrophages, where ROS-triggered disassembly of the 

nanoprobe was confirmed via reduction of the PA signal. In summary, these hybrid nanoprobes are 

a novel responsive imaging agent that have the potential to image ROS overproduction by 

comparing PA to CT contrast.
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1. INTRODUCTION

Reactive oxygen species (ROS) are ubiquitous signaling molecules in tissues affected by 

many diseases such as cancer, inflammatory bowel disease, and so forth.1,2 In addition, ROS 

damage can alter the normal function of cells, which eventually evolves into tissue 

inflammation. Therefore, the detection of ROS is important for the prevention and early 

diagnosis of diseases.3 Yet, most clinical approaches for the measurement of ROS 

production involve an ex vivo analysis of human fluids or tissues, which is slow and has 

issues of reproducibility.4 Due to those concerns, much work has focused on the detection of 

ROS using medical imaging techniques. Despite the developments in this field by electron 

paramagnetic resonance (EPR), fluorescence, and so forth, several challenges remain to be 

tackled.5,6 The limited image resolution and instrumental limitations that restrict the 

sensitivity of EPR, and the limited depth penetration of fluorescence are constraints in the 

development of accessible and reliable ROS imaging. Moreover, the nonbiodegradability of 

the probes and the synthetic challenges to reach an emission wavelength in the near-infrared 

window are shortcomings that limit the range of detectable diseases. Consequently, an ideal 

approach for the detection of endogenous ROS overproduction would be (1) minimally 

invasive, (2) allow the detection of ROS in deeply located tissues, and (3) would be 

quantifiable to confirm that the change in imaging contrast relates to the response of the 

probe to ROS instead of a low probe concentration.

Photoacoustic (PA) imaging is a noninvasive technique that allows real-time and dynamic 

visualization of pathologic events.7–9 PA has high spatial resolution compared to other 

optical imaging modalities and can provide volumetric information. Moreover, PA has 

recently received growing attention as an ROS imaging modality using activable probes of 

various types, namely, activable dyes,10 biomimetic material,11,12 or nanoparticles.13–17 For 

the detection and follow-up of probe excretion, computed tomography (CT) is a powerful 

technique that produces images of high spatial and temporal resolution while being 

commonly available. Moreover, attenuation in CT is linearly correlated to the AuNP 

concentration, which allows probe quantification. Therefore, the development of a ROS-

sensitive probe that provides contrast in both PA and CT is highly appealing for imaging of 

diseased sites overexpressing ROS and inflammatory responses.

Bouché et al. Page 2

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Spherical AuNP have a localized surface plasmon resonance (LSPR), which is responsible 

for their high absorbance band between 500 and 600 nm (with the wavelength increasing as 

their size increases). Close proximity of AuNP causes a collective plasmon resonance that 

translates into a strong bathochromic shift of absorbance into to the near-infrared region 

(NIR).18–20 This difference in optical properties between single AuNP and their engineering 

into assembled nanostructures has elicited strong interest, especially for applications as 

biosensors,21 phototherapy,22,23 or biomedical imaging.24,25 In this area, we have recently 

reported hybrid nanogels where the assembly of a AuNP payload in a polyphosphazene core 

provides strong contrast enhancement in CT imaging as well as PA owing to the dense 

packing of AuNP.26 Moreover, polyphosphazene functionalization with an arylboronate 

moiety efficiently allows its H2O2-triggered degradation into low molecular weight 

byproducts.27 Therefore, we sought to combine these technologies to develop a hybrid 

nanoprobe that would display both CT and PA contrasts and selectively disassemble under 

an ROS trigger to provide a loss of PA contrast while maintaining its CT contrast (Figure 1). 

This strategy relies on the detection of ROS by comparing the decreased contrast in PA to 

the constant CT contrast and has a potential for the detection of deeply lying ROS. 

Moreover, the use of bimodal imaging is effective for probe quantification, thus ensuring 

reliable ROS detection. Toward this aim, small excretable gold nanoparticles (sub-5 nm 

AuNPs) that are biocompatible, photostable, and provide strong CT contrast enhancement 

are assembled into polymeric nanogels composed of polyphosphazenes to provide PA 

contrast thanks to the collective plasmon coupling.28 The nanogels are composed of two 

polyphosphazene derivatives: poly[di(carboxylatophenoxy)phosphazene] (PCPP) and the 

arylboronate polyphosphazene derivative (PPB) (Scheme 1). PCPP is biodegradable and 

releases nontoxic and neutral pH byproducts.29 Moreover, we have shown the potential of 

PCPP nanogels as a carrier for AuNP, affording a highly biocompatible CT and PA contrast 

agent.26,30 On the other hand, PPB is designed to selectively degrade when exposed to ROS 

to achieve a ROS-triggered disassembly and release the AuNP payload, hence changing the 

PA signal. This nanoprobe combining a biodegradable polyphosphazene that hydrolyzes to 

ammonium and phosphate, with sub-5 nm AuNP that are excretable through the kidneys, 

was designed to be fully degradable in biological environments and be swiftly excreted 

through urine or feces to avoid long term retention. We report herein a hybrid nanoprobe, 

referred to as PPB NP in this manuscript, has high biocompatibility in vitro, efficiently 

disassembles, and displays a PA signal switch-off in response to ROS exposure both in 

solution and in macrophages, thus allowing endogenous ROS imaging by comparing the PA 

to CT contrast.

2. EXPERIMENTAL SECTION

Gold(III) chloride trihydrate, sodium borohydride, poly-di-

(carboxylatophenoxy)phosphazene disodium salt (PCPP, 1 MDa), spermine, reduced L-

glutathione, hydrogen peroxide (H2O2), ferrous perchlorate hydrate (Fe(ClO4)2·xH2O), 

potassium dioxide (KO2), and lipopolysaccharides (LPS) were purchased from Sigma-

Aldrich (St. Louis, MO). PEG-PLL (PEG MW 5000/PLL MW 4900) was purchased from 

Alamanda Polymers. Recombinant human interferon-γ protein (IFN-γ) was purchased from 

Abcam. For the microfluidic setup, the herringbone mixer microfluidic chip (channel 
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diameter of 600 μm) and male luers were purchased from Microfluidic ChipShop (Jena, 

Germany), the polyethylene tubing from VWR (Philadelphia, PA), and the syringe pumps 

from Braintree Scientific (Braintree, Ma). HepG2, RAW264.7, Renca, and SVEC4–10 cell 

lines were purchased from ATCC (Manassas, VA). LIVE/DEAD assay kits were purchased 

from Invitrogen (Grand Island, NY). Cells were cultured in Dubecco’s Modified Eagle 

Medium from Invitrogen (Grand Island, NY) supplemented with 1% penicillin and 10% 

fetal bovine serum unless specified otherwise. TNF-α ELISA kit was purchased from 

Invitrogen (Grand Island, NY).

The experimental details for the synthesis of the arylboronate polyphosphazene derivative 

(PPB) are detailed in the Supporting Information.

2.1. Nanoparticle Syntheses.

The glutathione-coated AuNP and PCPP NP were produced according to our previously 

reported procedure.26 By adaptation of a procedure previously reported by us,26 the PPB 

NPs were obtained by injection in a herringbone microfluidic chip at a flow rate of 6 

mL·min−1 of a solution of PPB (1.5 mg in DPBS at 1 mg·mL−1), PCPP (0.5 mg, in DPBS at 

1 mg·mL−1), and AuNP (5 mg) in parallel to spermine (1.96 mg in DPBS at 0.98 mg·mL−1, 

pH 7.4) and PEG-PLL (0.17 μg in DPBS at 0.085 μg·mL−1). The mixture collected from the 

microfluidic chip was then poured in a CaCl2 solution (100 mL, in DI H2O at 88 g·mL−1) 

and allowed to stir for 20 min. NPs were further purified by centrifugation (2k rpm, 8 min) 

and washing with DI H2O three times. Finally, the NP suspension was concentrated and 

stored at 4 °C in DI H2O.

2.2. Characterization Methods.
1H NMR spectroscopy was recorded on a Bruker 300 MHz spectrometer using the residual 

solvent peak as a reference. 31P NMR (121 MHz) measurements were performed using 85% 

phosphoric acid as an external standard. Gel permeation chromatography (GPC) 

measurement was carried out on a Viscotek HT-GPC instrument equipped with three GRAM 

columns (combination medium, 300 × 8 mm, 10 μm particle size) from PSS (Germany). 

DMAc with 57.6 mM LiBr and 0.1 M acetic acid was used as an eluent at a flow rate of 0.75 

mL·min−1 at 70 °C. Multidetector calibration (refractive index detector, viscometer and light 

scattering detector) was used to estimate the molecular weight of the polymer.

The nanoparticles were characterized by UV–visible spectroscopy on a UV–visible 

spectrophotometer (Thermo Fisher Scientific, USA) after dilution in DI water, transmission 

electron microscopy acquired at 80 keV using a JEOL 1010 microscope (JEOL, Tokyo, 

Japan) with an AMT NanoSprint500 5 Megapixel camera (AMT, Woburn (MA), USA), 

scanning electron microscopy, and energy-dispersive X-ray spectroscopy elemental mapping 

performed on a JEOL 7500F microscope operated at 15 kV (JEOL, Tokyo, Japan) with an 

EDAX Octane Elect EDS detector (Mahwah, NJ, USA), and Fourier transform infrared (FT-

IR) spectroscopy by grinding 5 μL of sample with 100 mg KBr, pressing into pellets, and 

analyzed on a JASCO FT/IR-480 PLUS. The elemental gold concentrations were 

determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) on 10 

Bouché et al. Page 4

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



μL samples digested in 1 mL of aqua regia and diluted to a final volume of 6 mL with DI 

H2O.

2.3. Evaluation of ROS Sensitivity.

The NPs were prepared in microcentrifuge tubes at a gold concentration of 0.5 mg·mL−1 and 

a volume of 1 mL DI H2O supplemented with several ROS species (i.e., H2O2 or ClO− or 

O2
·− or ·OH) and incubated in a water bath at 37 °C. At the desired time points, samples 

were vortexed, centrifuged at 2k rpm for 8 min, and the supernate was collected for 

quantification of the released cargo by ICP-OES. One milliliter of a freshly prepared 

incubation medium was rapidly added to each sample, and all were vortexed and allowed to 

incubate at 37 °C until the next time point. H2O2 was diluted from commercially available 

solutions. Both ClO− and O2
·− were generated by dilution of commercially available 

solutions of NaOCl and KO2, respectively. ·OH was generated in situ by reaction of H2O2/

Fe(ClO4)2 in a 10:1 molar ratio.

2.4. Computed Tomography and Photoacoustic Instrumelntation.

Computed tomography (CT) imaging was performed on nanoparticles at gold concentrations 

ranging from 0 to 5 mg·mL−1, suspended in agar gel (1% in DI H2O) in 250 μL vial tubes 

and secured in a plastic rack. Each sample was prepared in triplicate. CT images were 

acquired using a MiLabs μ-CT and operated at a tube voltage of 55 kV and tube current of 

190 μA with a 75 ms exposure. The image reconstruction was performed with a slice 

thickness of 100 μm and a 0.1 mm increment. OsiriX (v.3.7.1 64-bit software) was used to 

analyze the images. ROI values were recorded on five slices for a circular area drawn on the 

coronal view of each tube. The ROI values were normalized to the NP-free agarose gel. The 

reported attenuation value for each concentration corresponds to the average of triplicate 

samples of the selected concentration.

Photoacoustic (PA) imaging was done on NPs in solution, at gold concentrations ranging 

from 0 to 1 mg·mL−1, loaded into PE tubes (inner diameter 0.5 mm), and mounted into a 

plastic holder immersed in DI H2O. The PA signals were acquired at an excitation 

wavelength of 700 nm, a PA gain, 40 dB; priority, 95%, and a distance of 10 mm from the 

transducer in 3D mode. The LZ550 transducer was utilized (axial resolution, 44 μm; 

broadband frequency, 32–55 MHz). The images were analyzed using ImageJ (v.1.51 k 

software). The ROI values were recorded for a circular area drawn on the section of each 

tube and averaged. The ROI values were normalized in respect to DI water.

2.5. In Vitro Biocompatibility.

HepG2, Renca, SVEC4–10, and RAW264.7 cell lines were cultured according to the 

supplier instructions, and their cell viability after incubation with PPB NP was assessed 

using the LIVE/DEAD assay. Experiments were performed in triplicate. Cells were plated in 

35 mm dishes with 20 mm bottom wells at a cell density of 100 k cells per well. After 24 h, 

cells were treated with PPB NPs at concentrations of 0, 0.125, 0.25, and 0.5 mg·mL−1. After 

8 h of incubation at 37 °C in a 5% CO2 atmosphere, the cells were washed with DBPS twice 

and incubated for 20 min with 400 mL of LIVE/DEAD cocktail (0.1% stock athidium-1 

homodimer and 0.025% stock aalcein AM in DPBS). Three images of four different areas of 
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the well were acquired using two excitation/emission filter pairs: 495–515 nm for live cells 

dye and 528–617 nm for dead cells dye. A custom MATLAB code was used to count the 

number of cells for each filter pair in each image, and the ratio of dead cells to living cells 

was calculated as the viability measurement.

2.6. Endogenous ROS Quantification by Carboxy-H2DCFDA Assay.

First, RAW264.7 macrophages were cultured in 96-well plates at a density of 105 cells per 

well for 18 h. The cells were then washed gently with DPBS, treated with 100 μL of either 

DPBS or a stimulation cocktail of LPS (1 μg·mL−1) and IFN-γ (50 ng·mL−1) in DPBS, and 

incubated for 4 h at 37 °C in a 5% CO2 in a humidified incubator. Thirty minutes before the 

end of cell stimulation, each well was treated in the dark with 100 μL of a 15 μM solution of 

carboxy-H2DCFDA in DPBS. The negative control for cell auto fluorescence was cells 

incubated with DPBS alone, and the positive control was cells incubated with both 100 μL 

of a 100 mM H2O2 solution in DPBS and 100 μL of a 15 μM solution of carboxy-

H2DCFDA in DPBS. Each condition was prepared in triplicate. After 30 min incubation at 

37 °C in a 5% CO2 in a humidified incubator, the fluorescence results under excitation 

wavelength of 485 nm and emission at 528 nm were recorded using a plate reader (Synergy 

H1, BioTek, VT).

2.7. Endogenous TNF-α Expression by ELISA Assay.

First, RAW264.7 macrophages were cultured in 96-well plates at a density of 105 cells per 

well for 18 h. The cells were then washed with DPBS, treated with either DMEM cell 

medium (no FBS) or a stimulation cocktail of LPS (1 μg·mL−1) and IFN-γ (50 ng·mL−1) in 

DMEM (no FBS), and incubated for 4 h. The supernate was then collected and used in the 

ELISA assay according to the kit instructions. The absorbance was measured using a plate 

reader (Synergy H1, BioTek, VT).

2.8. Preparation of Cells for TEM.

The RAW264.7 macrophages were cultured in 6-well plates at a density of 2 × 106 cells per 

well for 18 h. The cells were then washed with DPBS, treated with either DMEM cell 

medium (no FBS) or a stimulation cocktail of LPS (1 μg·mL−1) and IFN-γ (50 ng·mL−1) in 

DMEM (no FBS), and incubated for 4 h. Each well was treated with the NP suspension at a 

final gold concentration of 0.1 mg·mL−1 and incubated for 4 h. The cells were washed twice 

with DPBS, freed from the plate by scraping in DMEM, and centrifuged (1k rpm, 5 min). 

Finally, the cell pellets were fixed in a solution of 2.5% glutaraldehyde and 2% 

formaldehyde, cut into 60 nm-thick sections, stained, and placed onto TEM grids.

2.9. Preparation of Cells for PA and CT Imaging.

To prepare the agar phantom for PA, a mixture of agarose in DI H2O (2 w/v %, 1 g in 50 

mL) was heated to 40 °C in a water bath under vigorous stirring until complete agarose 

dissolution. A layer (0.5 cm) of agar was poured in a dish used as mold and allowed to cool 

down for 1 h on a flat surface. Pipet tips were placed upside down, and a second layer (0.5 

cm) of agarose (2%) was poured and allowed to cool down for an additional 1 h. Then, the 

pipet tips were gently removed to free the holes dedicated to samples. In parallel, the 

Bouché et al. Page 6

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RAW264.7 macrophages were cultured in 6-well plates at a density of 2 × 106 cells per well 

for 18 h. The cells were then washed with DPBS, treated with either a DMEM cell medium 

(no FBS) or a stimulation cocktail of LPS (1 μg·mL−1) and IFN-γ (50 ng·mL−1) in DMEM 

(no FBS) and incubated for 4 h. Each well was treated with the NP suspension at a final gold 

concentration of 0.1 mg·mL−1 and incubated for 4 h. The cells were washed twice with 

DPBS, freed from the plate by scraping in DMEM, and centrifuged (1k rpm, 5 min). Finally, 

the cell pellets were resuspended into warm agar gel (0.5% in DI H2O, 40 °C), added to each 

well of the agar phantom (2% in DI H2O), covered in a layer of agar gel (2% in DI H2O, 40 

°C), and cooled down for 30 min on ice prior to imaging. This phantom was used within the 

following hours for PA imaging.

For CT, RAW264.7 macrophages were cultured under similar conditions as described above. 

The cell pellets were resuspended into a solution of 2.5% glutaraldehyde and 2% 

formaldehyde and allowed to loosely settle for 24 h prior CT imaging.

2.10. Statistical Analysis.

Each experiment was performed in a minimum of three replicates unless stated otherwise. 

The statistical analysis was performed by one-way ANOVA test on Excel software. The data 

were considered nonstatistically significant for p > 0.05.

3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization of the Degradable Polyphosphazene.

We describe here a nanogel formulation using polyphosphazene derivatives that have good 

qualities for biomedical applications, that is, high water solubility, biocompatibility, and 

biodegradability into harmless byproducts for rapid clearance (Scheme 1).31,32 The 

arylboronate polyphosphazene PPB is functionalized with a carboxylate substituent, 

providing aqueous solubility and cross-linking ability by ionic interactions, in addition to a 

responsive arylboronate substituent (Scheme S1). The arylboronate motif acts as a caging 

group that readily reacts with ROS to form the unstable glycine-functionalized 

polyphosphazene, which further undergoes a self-catalyzed backbone degradation into 

metabolizable phosphates and ammonia (Scheme 1). PPB was readily synthesized in four 

steps by bulk cationic polymerization of Cl3PNSiMe3 to a poly(dichloro)phosphazene, 

which was further functionalized by a postpolymerization strategy with glycinate 

arylboronic acid pinacol ester and allyl glycinate (Scheme S1) to give 

poly(organo)phosphazenes with a molecular weight (Mw) of approximately 340 000 g·mol
−1. Subsequent thiolene addition of thioglycolyic acid and deprotonation to the sodium salt 

gave the final water-soluble polyphosphazene PPB.

3.2. Formulation and Characterization of the ROS-Sensitive Probe.

Sub-5 nm gold nanoparticles coated with glutathione (GSH) were synthesized according to a 

reported method by reduction of gold chloride with sodium borohydride, followed by in situ 

ligand exchange with the coating agent GSH, and purification by centrifugation (Figure 2A).
26 Next, the hybrid nanogels were formulated using a microfluidic device that allows 

homogeneous mixing of the AuNP and free PPB/PCPP polymers with a spermine cross-
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linker and forms the AuNP-loaded polymeric nanoparticles in a controlled manner, as 

previously reported by us.26 This affords spherical PPB nanoparticles (PPB NP) 142.1 ± 

38.2 nm in diameter as determined by transmission electron microscopy (TEM; Figure 2B), 

with a loading efficiency of AuNP of 52%. While the free AuNPs have a maximum 

absorption peak at a wavelength of 514 nm, their dense assembly into the PPB NP induces a 

bathochromic shift of their maximum absorption peak to 610 nm resulting from the 

interparticle plasmon coupling (Figure 2D).28 Of note, this cooperative plasmon coupling 

phenomenon is responsible for the strong absorption at 700 nm of the PPB NP (dashed line 

in Figure 2D) compared to dispersed AuNP, thus allowing the use of these PPB NPs as a 

platform for photoacoustic imaging with laser excitation at 700 nm, close to the NIR region. 

Moreover, the chemical composition of the polymeric core was confirmed by Fourier 

transform infrared spectroscopy (FT-IR) owing to the characteristic peaks at ν = 1634 and 

1392 cm−1 that can be found both in the spectra of the PPB free polymer and PPB NP 

(Figure 2E). Additional characterizations by SEM, elemental mapping, and EDX confirmed 

the morphology and elemental composition of the PPB NP (Figure S1A–D). PCPP NPs 

loaded with AuNPs, synthesized previously by us, were used as a non-ROS-sensitive control 

formulation.26 The PCPP NPs are 170.0 ± 49.1 nm in diameter, the AuNP loading efficiency 

is 68%, and those particles have an intense absorbance at 700 nm (Figure 2C), comparable 

to the PPB NP. SEM, elemental mapping, and EDX corroborated both the morphology and 

elemental composition of the PCPP NP (Figure S1E–H).

3.3. Probe Activation by H2O2 and Associated Signal in PA and CT.

The arylboronate moiety is known to selectively degrade under H2O2 exposure, and 

therefore, the degradability of the PPB NP was investigated by incubations in media 

containing H2O2.27 Both the PPB and control PCPP NPs were incubated with 10 mM H2O2, 

and the amount of AuNP released from the polymeric NP was quantified at selected time 

points to investigate the degradation profiles of each formulation. The PPB NP released over 

97% of their AuNP payload within two days exposure to 10 mM H2O2, while the control 

PPB NP incubated in deionized water released less than 5% of their payload (Figure 3A). Of 

note, the control PCPP NP incubated both with and without H2O2 also released less than 5% 

of their total AuNP loading (Figure 3A). Moreover, the disassembly of the PPB NP in H2O2 

and the release of free AuNP were confirmed by the significant decrease of the absorption 

intensity at 700 nm observed in UV–vis spectroscopy (Figure 3B). The H2O2-triggered 

degradation of the polymer core of the PPB NP is also visible with TEM as amorphous 

organic aggregates and released single AuNP that are observed after 48 h exposure to H2O2 

(Figure 3C). On the contrary, both the PPB NP incubated in water and the PCPP NP in H2O2 

remained unaffected (Figure 3D,E, respectively). Of note, the PPB NP degraded more 

quickly upon exposure to both H2O2 and O2
·− than upon exposure to other ROS species, 

such as OCl− or ·OH, which lead to low levels of degradation of the PPB NP (Figure S2).

AuNPs are known to strongly attenuate X-rays and thus provide high CT contrast 

enhancement with minimal influence from their coating or the distance from their 

neighboring AuNP. Therefore, we observed that PPB NPs produce strong contrast 

enhancement that is linearly correlated to the gold concentration (Figure S3A,B), as 

expected. Moreover, the PPB NPs have strong absorbance at 700 nm due to the interparticle 
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plasmon resonance of AuNP and can be used as contrast agents in photoacoustic imaging. 

The PPB NP provided a PA signal that linearly correlates to the gold concentration and can 

be detected at gold concentrations down to 0.125 mg·mL−1 (Figure S3C,D). The PA signal 

from PPB NP was found to have a maximum intensity at 700 nm and decreases as the 

excitation wavelength increases (Figure S3E).

We next investigated the influence of the H2O2-triggered degradation of PPB NP on their 

contrast enhancement in both PA and CT. Owing to the low absorbance intensity of a single 

AuNP compared to the nondegraded PPB NP at 700 nm (Figures 2D and 3B), it is expected 

that their disassembly would result in a weaker PA signal compared to the nondegraded 

nanoparticles. The PA signal for PPB NP incubated with 10 mM H2O2 was 83% lower than 

that for PPB NP incubated without H2O2 (Figure 4A). On the other hand, the control PCPP 

NPs that are not sensitive to H2O2 and maintain their assembly display an intense PA signal 

independently of the incubation media (Figure 4A). Of note, the PPB NP degradation was 

dependent on the H2O2 dose, with higher concentrations of H2O2 inducing greater release of 

AuNP (Figure S4A). Moreover, the PA signal showed a signal decrease that correlates with 

increasing H2O2 concentration (Figure S4B).

Since X-ray attenuation depends on the AuNP concentration and not on its immediate 

surroundings, the CT contrast enhancement of PPB NP was expected to remain unchanged 

upon exposure to H2O2. No significant difference in CT contrast enhancement was observed 

between the PPB NPs incubated with or without H2O2 at the same gold concentration 

(Figure 4B,C). Similarly, the control PCPP NP provided comparable CT contrast 

enhancement in the two media (Figure 4B,C). Overall, the ROS-sensitive PPB NP provided 

a significant difference in PA signal intensity depending on the presence of ROS while 

maintaining a constant CT contrast enhancement. This investigation of the responsiveness in 

solution of the PPB NP nanoprobe to ROS supports the PA switch-off ability of the PPB NP 

exposed to H2O2 and possible PA to CT contrast comparison to identify ROS 

overexpression.

3.4. In Vitro Detection of ROS in Macrophages.

Patients suffering pathological conditions such as cancer or inflammatory diseases tend to 

have local high concentrations of macrophages that overexpress ROS in the tissues affected 

by inflammation. Therefore, using RAW264.7 macrophages for our study, we investigated 

the ability of PPB NP to detect endogenous ROS overproduction by PA signal switch off and 

PA to CT contrast comparison. First, we investigated the viability of four different cell lines: 

HepG2 (hepatocytes), SVEC4 (endothelial), Renca (kidney), and RAW264.7 (macrophages) 

after incubation for 8 h with the PPB NP (Figure S5). No significant decrease in the cell 

viability was observed by LIVE-DEAD assay on all the tested cell lines, thus indicating that 

the PPB NP formulation was cytocompatible.

To investigate the selective degradability and PA signal switch-off of the PPB NP in 

inflamed macrophages, RAW264.7 cells were stimulated by 4 h incubation with bacterial 

cell wall lipopolysaccharide (LPS) and interferon-γ (IFN-γ) according to a previously 

reported procedure.33 Elevated ROS levels in stimulated cells were confirmed using a 

fluorescence assay (Figure S6A). Others have reported such stimulation resulting in elevated 
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ROS throughout the macrophage cells.33 In addition, the cell inflammatory status was 

supported by elevated production of TNF-α (Figure S6B). The effects on the nanoparticles 

taken up by the cells were investigated with TEM. The nonstimulated macrophages 

efficiently engulfed both PPB and PCPP NPs into endosomes (Figure 5A,B, respectively). 

However, while the control PCPP NP maintained their spherical shape and dense 

concentration of AuNP, a marked trend to greater degradation of the ROS-sensitive PPB NP 

is visible with the loss of shape and release of single AuNP. A similar trend was observed for 

the stimulated macrophages where the PPB NP became almost completely disassembled 

(Figure 5C), while the control PCPP NP did not show significant morphological changes 

(Figure 5D). Therefore, the TEM analysis of the representative macrophages incubated with 

the nanoparticles suggest ROS-triggered disassembly of the PPB matrix leading to the 

release of AuNP intracellularly.

Encouraged by these results, we analyzed the PA contrast provided by the stimulated 

RAW264.7 cells incubated with PPB NP to determine whether a decrease in the PA signal 

intensity occurs as a consequence of ROS-triggered NP disassembly. While the 

nonstimulated macrophages that were incubated with the PPB NP have a strong PA signal, a 

significant decrease of 73% in PA signal is observed in the case of the inflammation-

stimulated macrophages (Figure 6A,C). Considering the enhanced disassembly of PPB NP 

observed with TEM on stimulated cells, the loss of PA signal seems to arise from the greater 

ROS production in the inflamed macrophages that triggers the disassembly of the 

nanoprobe. On the other hand, in the case of the PCPP NPs that are not sensitive to ROS, no 

significant change in the PA signal is observed between the two macrophages states. 

Moreover, both stimulated and nonstimulated macrophages incubated with the PPB NP 

display similar CT attenuation, confirming the possibility to use CT for nanoprobe 

quantification irrespective of its environment (Figure 6B,C). Similarly, the PCPP NP-treated 

macrophages display similar contrast enhancement in CT, independently from the cellular 

ROS level. Overall, we have shown that ROS-responsive switch-off probe PPB NP can 

differentiate macrophages that overexpress ROS from the noninflamed macrophages by 

comparing the signal intensity observed in PA and CT.

We found that functionalizing a polyphosphazene backbone with an arylboronate moiety 

efficiently provided a stimulus-responsive behavior and enhanced ROS-triggered 

degradation, similarly to other arylboronate polyphosphazene derivatives27 or other 

functionalized polymers.34,35 The PPB polymer we used as a nanogel for the assembly of 

AuNP was shown to degrade selectively upon ROS exposure within 48 h. Although this 

proof-of-principle supported our hypothesis, faster ROS-triggered degradation rates have 

been reported in the case of capsules made of arylboronate functionalized polyester that 

were capable of selectively releasing 50% of their nile red payload within 10 h36 or for free 

dextran functionalized by arylboronate moieties whose half-life was as low as 36 min when 

exposed to only 1 mM H2O2.37 Accordingly, enhancing the sensitivity of our PPB NP by 

fine-tuning the polyphosphazene core would be desirable to achieve an improved ROS 

imaging nanoprobe.

Polyphosphazene-AuNP-based nanoconstructs of differing structures have been reported for 

nanomedicine use, for example, Chhour et al. reported PCPP-AuNP nanoassemblies where 
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the location of AuNP within the polymeric structure could be controlled and demonstrated 

their contrast generation in CT.30 Cheheltani et al. highlighted the potential of PCPP-AuNP 

particles as the biodegradable multimodality contrast agent for use in both CT and PA.26 

Interestingly, other polymers based on a phosphazene core have been used in combination 

with AuNP for nanomedicine use, and notably, Hu et al. fabricated spheres of 

polycyclotriphosphazene and Fe3O4 covered in a gold nanoshell and found those 

nanoconstructs to have a potential as the therapeutic agent in photothermal therapy (PTT).38 

Particles based on polycyclotriphosphazene, whose surface was functionalized with AuNP, 

were shown by Wei et al. to have dual therapeutic properties in PTT and photodynamic 

therapy.39 However, we report herein a novel ROS-responsive polymer and have fabricated 

the first example of ROS-responsive AuNP-polyphosphazene nanomaterials.

The ROS-triggered release of the payload content could be used to load other metal 

nanoparticles such as palladium NP that work cooperatively with AuNP to provide novel 

sensing properties.40 Other materials could be loaded too, such as dyes that grant 

aggregation induced PA signal,41 or metal nanoparticles that experience an interparticle 

plasmon coupling effect, such as aluminium NPs that are less expensive than gold, silver that 

provides contrast enhancement in dual-energy mammography, and so forth.42,43 

Accordingly, water soluble fluorescent dyes or quantum dots are also appealing for the 

Forster energy transfer (FRET) on–off nanoprobe by a similar mechanism of ROS-triggered 

disassembly to image ROS overexpression in superficial tissues.44–46 In addition, the ROS-

responsive PPB NP could also find applications as a stimulus-responsive theranostic or 

delivery platform for either anticancer or antioxidant drugs by targeting the areas with high 

levels of ROS, therefore offering the possibility to treat inflammation and related diseases.
47,48

In summary, the PPB NPs loaded with sub-5 nm AuNPs have high in vitro biocompatibility 

and provide signal in PA due to the interparticle plasmon coupling effect of neighboring 

AuNP, in addition to providing strong contrast enhancement in CT allowing the nanoprobe 

quantification with minimal influence from their environment. Moreover, the 

functionalization of the polyphosphazene core of PPB with responsive arylboronate moieties 

grants to the PPB NP the capability to degrade under ROS exposure and release single 

AuNP, resulting in a significant decrease of the PA signal. Certainly, improvement in the 

kinetics of the ROS-triggered degradation of the free PPB by modifying the arylboronate 

linkage to the polyphosphazene core would be required for facilitating the translation of this 

technology to a clinical or preclinical setup. However, such ROS-responsive nanogel-

allowing payload release for signal switch-off in PA could be extended to other 

nanomaterials that are either less expensive or give access to ROS imaging with other 

imaging modalities. Moreover, we envision that loading small antioxidant drugs along with 

metal nanoparticles has the potential to image in real-time the ROS-triggered delivery of the 

drug and treats the source of oxidative stress overproduction using a single theranostic 

nanoparticle formulation.
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4. CONCLUSIONS

We reported herein hybrid PPB nanoprobes that selectively disassemble when exposed to 

ROS and allow the ratiometric imaging of endogenous ROS by bimodal PA and CT imaging. 

The nanoprobes were designed to assemble excretable AuNP into polymeric nanogels 

composed of a biodegradable polyphosphazene backbone with a caging arylboronate moiety 

that degrades in the presence of ROS. These nanoprobes provide strong contrast 

enhancement in both CT and PA until they are exposed to ROS, which triggers the selective 

disassembly of the PPB NP, thus causing the release of single AuNP and PA signal 

reduction. The detection of ROS by comparison of PA to CT contrast in inflamed 

macrophages served as a proof-of concept for this on–off bimodal nanoprobe. Finally, these 

novel hybrid nanoprobes are biocompatible. Moreover, the tunable formulation process 

described herein could be adapted in the future to achieve nanotheranostics by loading ROS 

scavenging, antimicrobial, or anticancer drugs in the PPB NP and therefore allow a ROS-

targeted therapy to treat the cause of the inflammation.
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Figure 1. 
Assembly of AuNP in nanogels that selectively degrade under ROS exposure and release 

free AuNP for imaging of ROS with PA.
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Figure 2. 
(A)–(C) representative TEM of AuNP (left), PPB NP (center), and PCPP NP (right). (D) 

UV–visible spectra of the PPB NP (red) compared to the free AuNP (orange) and control 

PCPP NP (blue); (E) FT-IR spectrum of ROS-sensitive NP (red) compared to the free PPB 

polymer (grey) and PCPP NP (blue).

Bouché et al. Page 17

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Effects of 10 mM H2O2 on the degradation of PPB NP and the control PCPP NP after 48 h. 

(A) Cumulative gold released determined by ICP-OES. (B) UV–visible spectra. 

Representative TEM of (C) PPB NP in 10 mM H2O2, (D) PPB NP without H2O2, and (E) 

PCPP NP in 10 mM H2O2. The symbol *** indicates a statistically significant difference at 

p < 0.001.
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Figure 4. 
Effect of H2O2 incubation for 48 h with PPB and PCPP NPs on their (A) PA contrast and 

(B) CT contrast. (C) Percentage of contrast enhancement in CT (blue) and PA (red) of the 

PPB or PCPP NP to control. Experiments done at a gold concentration of 1 mg·mL−1. The 

symbols ** and ‘ns’ indicate either a statistically significant difference at p < 0.01 or 

nonstatistically significant differences, respectively. Error bars represent standard deviations 

after conversion to percentages.
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Figure 5. 
Detection of ROS in a stimulated RAW 264.7 monocyte model of inflammation. 

Representative TEM images of normal RAW 264.7 cells incubated with (A) PPB NP or (B) 

PCPP NP, and LPS-stimulated RAW 264.7 monocyte cells after 4 h incubation with (C) the 

ROS-sensitive NP or (D) the control PCPP NP. The scale bars in the insets corresponds to 

200 nm.
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Figure 6. 
Influence of LPS stimulation on PA and CT contrast in macrophages incubated with PPB NP 

or the control PCPP NP. (A) PA images, (B) CT images, and (C) percentage of contrast 

enhancement in CT (blue) and PA (red) of the normal or stimulated cells incubated with 

PPB or PCPP NP. The symbols ** and ‘ns’ indicate either a statistically significant 

difference at p < 0.01 or nonstatistically significant differences, respectively. Error bars 

represent standard deviations after conversion to percentages.
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Scheme 1. 
Degradation Pathways of PCPP (Upper) and the ROS-Sensitive PPB (Lower) Yielding 

Neutral pH and Nontoxic Byproducts
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